PHƯƠNG TRÌNH ELLIPTIC Á TUYẾN TÍNH CẤP HAI VỚI HAI BIẾN ĐỘC LẬP


1. Lý do chọn Luận văn
Phương trình đạo hàm riêng cấp hai loại elliptic có một quá trình phát triển lâu dài. Trường hợp phương trình với hai biến độc lập có một mối liên quan chặt chẽ với lý thuyết hàm chỉnh hình và ánh xạ bảo giác trên mặt phẳng phức.
Mục tiêu của Luận văn là trình bày lý thuyết phương trình elliptic á tuyến tính cấp hai với hai biến độc lập. Khác với trường hợp khi số biến lớn hơn hoặc bằng ba, trong trường hợp hai biến, người ta không đòi hỏi các hệ số của phương trình là các hàm trơn, mà chỉ cần là các hàm liên tục.
2. Phương pháp nghiên cứu
Sử dụng các kết quả và phương pháp của lý thuyết ánh xạ á bảo giác và của lý thuyết phương trình elliptic cấp hai tuyến tính cùng với phương pháp lặp.
3. Mục đích của Luận văn
Trình bày các tính chất định tính về độ trơn của nghiệm phương trình elliptic á tuyến tính cấp hai với hai biến độc lập.

Mục lục
Một số kiến thức chuẩn bị 4
1.1. Lớp hàm Holder ……………………………………………… 4
1.1.1 Liên tục Holder ………………………………………... 4
1.1.2 Không gian
1.2. Đánh giá đối với ánh xạ á bảo giác…………………………… 6
1.2.1 Đánh giá đối với tích phân Dirichlet đối với ánh xạ á bảo
1.2.2 Đánh giá chuẩn Holder đối với ánh xạ á bảo giác………. 12
Bài toán biên Dirichlet cho phương trình elliptic á tuyến tính cấp hai
với hai biến độc lập 16
2.1 Đánh giá địa phương đối với chuẩn Holder cho đạo hàm cấp một của nghiệm phương trình tuyến tính cấp hai……………… 16
2.2 Đánh giá toàn cục đối với chuẩn Holder cho đạo hàm cấp một của nghiệm phương trình tuyến tính cấp hai…………………... 20
2.3 Tính giải được của bài toán biên Dirichlet cho phương trình elliptic đều á tuyến tính cấp hai……………………………….. 22
2.4 Tính giải được của bài toán biên Dirichlet cho phương trình
elliptic không đều á tuyến tính cấp hai………………………… 28
2.5 Sự tương đương của độ nghiêng bị chặn và điều kiện ba điểm.... 35

LINK DOWNLOAD


1. Lý do chọn Luận văn
Phương trình đạo hàm riêng cấp hai loại elliptic có một quá trình phát triển lâu dài. Trường hợp phương trình với hai biến độc lập có một mối liên quan chặt chẽ với lý thuyết hàm chỉnh hình và ánh xạ bảo giác trên mặt phẳng phức.
Mục tiêu của Luận văn là trình bày lý thuyết phương trình elliptic á tuyến tính cấp hai với hai biến độc lập. Khác với trường hợp khi số biến lớn hơn hoặc bằng ba, trong trường hợp hai biến, người ta không đòi hỏi các hệ số của phương trình là các hàm trơn, mà chỉ cần là các hàm liên tục.
2. Phương pháp nghiên cứu
Sử dụng các kết quả và phương pháp của lý thuyết ánh xạ á bảo giác và của lý thuyết phương trình elliptic cấp hai tuyến tính cùng với phương pháp lặp.
3. Mục đích của Luận văn
Trình bày các tính chất định tính về độ trơn của nghiệm phương trình elliptic á tuyến tính cấp hai với hai biến độc lập.

Mục lục
Một số kiến thức chuẩn bị 4
1.1. Lớp hàm Holder ……………………………………………… 4
1.1.1 Liên tục Holder ………………………………………... 4
1.1.2 Không gian
1.2. Đánh giá đối với ánh xạ á bảo giác…………………………… 6
1.2.1 Đánh giá đối với tích phân Dirichlet đối với ánh xạ á bảo
1.2.2 Đánh giá chuẩn Holder đối với ánh xạ á bảo giác………. 12
Bài toán biên Dirichlet cho phương trình elliptic á tuyến tính cấp hai
với hai biến độc lập 16
2.1 Đánh giá địa phương đối với chuẩn Holder cho đạo hàm cấp một của nghiệm phương trình tuyến tính cấp hai……………… 16
2.2 Đánh giá toàn cục đối với chuẩn Holder cho đạo hàm cấp một của nghiệm phương trình tuyến tính cấp hai…………………... 20
2.3 Tính giải được của bài toán biên Dirichlet cho phương trình elliptic đều á tuyến tính cấp hai……………………………….. 22
2.4 Tính giải được của bài toán biên Dirichlet cho phương trình
elliptic không đều á tuyến tính cấp hai………………………… 28
2.5 Sự tương đương của độ nghiêng bị chặn và điều kiện ba điểm.... 35

LINK DOWNLOAD

M_tả
M_tả

Không có nhận xét nào: